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ABSTRACT 

Three methods a re  presented for calculating the spectral 

absorption coefficient for nonmetallic crystalline solids, and a method 

for calculating the thermal conductivity of a cubic close-packed a r r ay  

of solid spheres is presented. 

based on a classical, free-ion model, a classical harmonic oscillator 

model, and a quantum-mechanical harmonic oscillator model. The 

conductivity calculation is based on the simple addition of conductances 

in ser ies  and parallel. 
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The task which has been considered during the contract period 

consisted of the following topics: 

0 Infrared and microwave interactions 

Heat transfer 

Correlations between thermal and dielectric properties 

Possibilities for determination of temperature and thermal 
properties of materials by remote sensing of microwave 
radiation. 

Each of the first  three topics has been studied. Possibilities for 

determination of temperature and thermal properties of materials by 

remote sensing of microwave radiation were not considered. 

attention has been given to infrared interactions in solids and the problem 

of conduction of heat through glass spheres, these two topics comprise the 

bulk of this report. 

equation relating the index of refraction to the electrical conductivity and 

the absorption coefficient, namely 

Since most 

It is mentioned here only that there does exist an 

2 P= n K = -  
V 

where 

n - index of refraction, 

K - absorption coefficient, 

p - permeability, 

u - electrical conductivity, and 

v - frequency of the radiation. 

1 



There also exists the well-known Wiedemann-Franz law relating the 

thermal conductivity to the electrical conductivity: 

K - = L T  
0- 

where 

K - thermal conductivity, 

ET - electrical conductivity, 

T - absolute temperature, and 

L - Lorentz number (= 1.85 X 10") 

These relations can be combined to relate the thermal property, K, to the 

dielectric property n. However, the above equatians are known to be true 

only for metals and further work was not done on this problem. 

2 
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DISCUSSION 

THE ABSORPTION COEFFICIENT OF CRYSTALLINE SOLIDS 

In this section a r e  presented three methods which were used to 

obtain expressions for the infrared-microwave absorption coefficient of 

crystalline solids. 

composedof free ions. 

electromagnetic field acts upon them. 

assume that the ions a re  in simple harmonic motion before the field is 

turned on, the form-er trezting t h e  pi-Gbhi-il ciassicaiiy, the latter, 

quantum mechanically. 

intensity of an electromagnetic wave as it passes through a solid is pro- 

portional to the intensity and to the distance traveled by the beam in the 

solid. 

The first is based on the assumption that the solid is 

These ions a re  assumed to be at  r e s t  before the 

The second and third methods 

Each of the methods assumes that the loss in 

The quantity to be determined is the constant of proportionality, CY. 

Free  Ion Model 

This model considers a monochromatic plane-polarized electro- 

magnetic wave incident upon a free ion at  rest .  

is found a s  follows: 

The absorption coefficient 

1 d I  
(ys-- 

I dx 

I is the intensity of the beam, i. e . ,  the energy per unit area per unit 

time passing a given point in the material. 

i t  passes through a thickness of material dx. To calculate a, a distance dx 

must f i r s t  be decided upon. h the present case it is natural to assume that 

this distance is the so-called lattice CGnstant, a ,  which is the separation of 

ions in a crystalline solid. 

dI is the change in intensity as 

Thus, 

dx = a ( 2 )  

The intensity of a plane-polarized monochromatic beam of radiation is 
given by the well-known expression 1 
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2 = Eo I=--- 
8 ~ r  

where c is the velocity of propagation of electromagnetic radiation 

(= 3 X l o u  cm sec”) and Eo is the amplitude of the electromagnetic 

radiation described by 

E = Eo sin wt 

where E is the electric field strength, o is the (angular) frequency of the 

radiation, and t the time. It therefore remains to calculate dI, the change 

in intensity. 

Considering the area to be the constant value a’, and the time, 

At, to be the time required for the beam to traverse a unit cell  of length a,  

namely a / c ,  the problem reduces to a calculation of the work done on a 

unit charge by the field, i. e. , the loss in intensity is given by 

c w  - -  - W dI= 
a2 .  a /c  a’ 

where W is the work done on the charge by the field in the time At  = a /c .  

It therefore becomes the problem to calculate W. Now W may be written 

in the form 

W = l  F ( S ) d t  

F = e E  = eEo s i n o t  

( 3 )  

and (ds/dt)  is calculated from Newton’s second law as  follows: 

dv 
m 9 Z m - z  dt e Eo sin ot  . 

4 



Then 

e E, cos ot e Eo 
v(t) = - t- 

mo ma 

where the assumption that the particle is initially a t  res t  has been used, 

i. e . ,  v(0) = 0. 

results in 

Substituting this expression and Equation 6 into Equation 5 

a/  c 
e E, cos wt 

w = j (e Eo sinwt) t 5) dt , 
mw 

0 

which yields upon integration, 

2 e' E, 
W =  

w IIW 

Now for the infrared-microwave region, the maximum frequency is 

approximately 1015 sec and the lattice constant a is typically about 

5 X 10" crn. Therefore, 

-1 2 

The sine and cosine terms can therefore be expanded and only the first 

order terms kept, so that 

- e' Eo2 a2 
W =  

2mcZ 

This is the expression for the work done on a single ion of mass m. 

most ionic crystals there a re  at least two ions per unit cell. 

work done on bcth ions is then 

In 

The total 

- e2 E , ~  a' 1 
W =  2cz (A+;;;;) * 

5 
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Inserting this back now into Equation 4 gives 

2 2  -e Eo 

2 m c a  
dI = 

Inserting this and Equations 2 and 3 back into Equation 1 yields 

This is the final expression for the absorption coefficient. It is 
seen to be independent of frequency, in contradiction with experiment 3 . 
However, a short calculation shows that it does yield the correct order of 

magnitude for a sodium chloride crystal. Using the values 

e = 4.8 X 10'" esu 

m' = 3.84 X 

m = 5.93 x 

g m  (the mass of a Na ion) 

g m  (the mass of a ~1 ion) 

a = 5.63 X cm 

c = 3 x l o m  cm/sec,  

(Y is found to be 0. 0435 cm-l. 

Handbook value of 0. 02 cm-' for X=13p, which is in the middle of the 

infrared region. 

This compares favorably with the AIP 
4 

Harmonic Oscillator Model 

In order to incorporate frequency into the expression for  the 

absorption coefficient it is now assumed that the ion is a harmonic 

oscillator. 

absence of the field) 

i ts  dispiacement from equiiiiirium can then be written (in the 

a 
2 s = - sin wot (7) 
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where a is the lattice constant, t is the time and wo is the characteristic 

frequency of the oscillator, given by 

where k is the force constant characteristic of the crystal and m is the 

mass of the ion. 

The work done on the ion by the field is again given by 

a/  c 

0 

while the equation for the displacement now becomes 

d2s m p  = - ks t e Eo sinwt 

The general solution of Equation 10 can be written 

s ( t )  = A sin o,t t B cos w,t t 
2 wo2 - 0 

where A and B a re  constants to be determined by initial conditions. Using 

Equation 7 for the initial conditions s ( 0 )  = 0 and s ' ( 0 )  = a w 0 / 2 ,  gives B = 0 

and (with some manipulation) 

e Eow a 

Therefore , 

- 
e E o  , 

e Eo w 
s ( t )  = [- - 

2 2  ] sin mot +[ I sin wt , 
2 mwo(wo -w ) m (wo -w ) 

7 



2 2  assuming that wo f o  . Then 

- -  ds - A wo cos w o t  t C w cos w t  
dt 

where 

Using again Equation 9, 

Integrating and again using the fact that wa/c C < 1, for one ion 

W =  

For two ions this becomes 

e2 E,' (y)y=&) . 
W =  

2 (wo*-w2) 

Using again Equations 1, 2, 3 and 4, 

The constant 

has been calculated in the previous section. 

the ref ore,  bec ome s 

The final equation for CY, 

8 



2 
0 

LY = ( 0 .  0435 crn") 2 
o & - w  

This gives the desired frequency dependence for 

(11) 

CY. To compare this with 

experiment, a value for oo is needed. 

Using Kittel's5 method for finding k, the elastic stiffness constant 

c12 = 0.127 X l o u  dyne/cm2, and a = 3 X cm a re  used to obtain 

k = 0.381 X l o4  dyne/cm. 

23.3 X lo-% gm. 

This is found from Equation 8. 

The mass wil l  be the reduced mass p = m m ' / ( m t m ' ) =  

Then woL = 1.635 X l o t6  sec-2 or wo = 73.8 X 1015 sec-'  . 

An attempt w a s  made to fit the data presented for NaCl in the A I P  

Handbook to Equation 11. 

data, however, varied from 45. 2 X loz6  sec-' to 210. 5 X loz6 sec-'. 

in Equation 11, woz is entirely negligible with respect to w2 and the frequency 

dependence effectively drops out. 

is that the wrong value for the elastic stiffness constant was used. However, 

the only two other values for c a re  given by Kittel' a s  0.486 X 10" dyne/cm2 

and 0. 128 X 10" dyne/cm2. 

out of the range of frequencies given by the Handbook and the latter is nearly 

identical to the value used. Thus, unless still  another elastic stiffness 

constant is obtained, this is  not the source of the error .  

The angular frequencies squared, a', for this 

Thus 

The most probable explanation for this 

The former yields an wo which is completely 

Quantum Mechanical Harmonic Oscillator 

To obtain the greatest accuracy in any given physical situation, 

quantum mechanics must be used. In the case of the harmonic oscillator, 

the wave functions a r e  well-known s o  that the calculation of the transition 

probability is much more straightforward than for other systems. 

transition probability for a transition from a quantum state n to a quantum 

The 

state n' i s  given by 7 

+ +  3 2 2  e 
7 - l  = 1 ITn' [exp ( i k .  r ) ]  E C ~ .  grad Wn dv 

m2 c uL 

9 



where 

e -  

m -  

c -  

0 -  

-c 
k -  
-t 

r -  

-c 
€- - kh 

v -  

electronic charge 

intensity* of the incident radiation 

reduced mass of the system 

velocity of electromagnetic wave propagation 

angular frequency of the incident radiation 

wave function of the nth state 

coiqleir  conjujiigcrte of the wave function of the n’th state 

propagation vector of the incident field 

the displacement vector of the reduced mass referred to 
some aribtrary origin 

polarization vector of the incoming field 

volume of integration. 

In the present case, the system is assumed to be one-dimensional in the 

y-direction and the incoming wave is assumed to be plane-polarized in 

this direction, so that k - r = 0, E- - grad Wn = d Wn/dy and dv = a’ dy 

where a is again the lattice constant. Equation 12 therefore becomes 

- - t -  

kX 

1 

- 
To evaluate this expression, it is necessary to have expressions for Writ 
and Wn. 

related to the temperature of the specimen in the following way, 

These a re  obtained a s  follows: the energy of the oscillator is 

1 E =  - k T  2 

Note that this intensity is not the same as  the intensity used in the previous 
sections. They a re  related by I = I (w)  A m  where Aa is the small  frequency 
range of the incident radiation. 

:% 
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I '  where 

k - Boltzmann's constant 

T - absolute temperature. 

The energy of the oscillator is  also given by 

E = E U ~  ( n + + )  

where E = h / 2 ~  is Planck's constant divided by 27~. 

expressions shows that 

Equating these two 

kT-Ewo 
n =  

2 E W 0  

Note that this is an approximate result only, for two reasons: (1) the 

expression E = - kT,  arising from kinetic theory, is only an approxi- 

mation for the energy of an oscillator, and (2)  the constant oo in the 

second equation is also an approximate result since it is calculated from 

1 
2 

the approximate expression of Kittel 5 , k = p a, where p is the elastic 

stiffness constant. 

This expression does yield an approximate expression for n, 

however, and it will  be interesting to make a sample calculation to obtain 

an  approximate number for the transition probability. For  T = 300°K and 

wo = 1.28 X 10" sec-'  

n =  (1. 38X10-23j~ule/0K)(3000K)-(1. 06X 10'Ujoule sec)(1.28X 6ec-l) 

2 (1. 06 X joule sec)  (1.28 X sec-') 

- - 
or  n = 1. 

by Schiff8 a s  

Now the wave functions Wn! and Wn are  Wo and 7v$T1 and are given 

11 



and 

mk 
D = - 

= E 2  

where 

!< 

\ (1  - y z  yz) [exp (-yzy2)]  dy 
2 
-a/  2 

and H, and HI a r e  Hermite polynomials, given b y  

Ho = 1 

and 

H 1 = 2  yy . 

Thus, from Equation 13 

where 

Since D is not readily evaluated, it is left in this form. 

In this method, the absorption coefficient is calculated as follows: 

the transition probability is the probability per unit time that an  oscillator 

will make a transition from a state n to the next higher state. The energy 

change for such a transition is 

12 



The area  and the time are  the same as  before: A = a 2 and t = a /c ,  so  that 

the change in intensity of the beam is given by 

- 1  
T EWoC 

a3 
dI = 

The absorption coefficient is therefore 

where T- is given by Equation 14. 

THE THERMAL CONDUCTIVITY O F  AN ARRAY OF SPHERES I N  A 
CUBIC CLOSE-PACKED STRUCTURE 

It is the purpose of this section to present a derivation of an  

expression for the thermal conductivity of an  a r r ay  of spheres under 

gravitational loading. 

posed of tiny spherical beads. 

Such an a r ray  is typified by fine powders com- 

Rayleigh9 considered this problem for the square a r r ay  of 

spheres depicted in Figure la. 

many layers of the type shown in Figure lb.  

The present work considers the case of 

. .  

Figure 1 
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The latter type is considered to be more representative of the way in 

which spheres will  arrange themselves when poured into a container and 

shaken. 

In considering the problem of the thermal conductivity of close- 

packed spheres, it is f i rs t  noted that in the ideal case the true con- 

ductivity (i. e . ,  omitting any radiation contribution to  the measured 

conductivity) would be zero since there can be no heat transfer across  

the point contacts made between perfect spheres. In the present case 

there is a finite area of contact and therefore conductance from one sphere 

te azothei becaiise the spheres are  deformed under their own weight and 

the weight of spheres above them. In any application to spacecraft sub- 

jected to zero-g conditions, this factor would not contribute but there would 

still be an area of contact due to van der Waals forces between ions. 

static forces may also enter into the calculation. 

transfer due to these forces is important relative to  the radiation transport 

through the spheres is not known. 

Electro- 

Whether o r  not the heat 

The thermal conductivity of any given material is defined according 

to the apparatus depicted in cross-section in Figure 2. 

plates held at  the constant temperatures TI  and Tz, the cross-hatched 

The dark a reas  a r e  

Figure 2 

14 



. 
areas  a re  perfect insulators, and the dotted a rea  is the sample whose 

conductivity is to be measured. Not  shown, but also considered to be 

part  of the apparatus, a r e  two perfectly insulating plates at  the front and 

back. 

higher temperature to the plate at  the lower temperature. 

heat per unit time per unit area that is transferred from one plate to the 

other is proportional to the area of the plates and the difference in 

temperature, and is inversely proportional to the distance between the 

plates. 

In such an apparatus heat is transferred from the plate at  the 

The amount of 

This is expressed by the equation 

where A is the area of each plate and P is the distance between plates. 

The constant of proportionality K is known as  the thermal conductivity of 

the sample. 

In the present case the sample is a powder composed of tiny glass 

beads. For ease in visualization, the "two-dimensional" system depicted 

in cross-section in Figure 3 is first analyzed. 

w i l l  then be generalized to the case of a three-dimensional close-packed 

array.  

The results of this analysis 

Figure 3 

15 



I '  To find K, it is noted that the quantities K and A can be considered 

together a s  the conductance, KA, of the array.  This total effective 

conductance can then be found by the usual rules for adding conductances 

in ser ies  and parallel. Since there a r e  a total of 9 contacts between any 

two given rows, the total conductance between the top row and the second 

row is 9kA1;  that between the second and third rows is 9kA2,  and that 

between the third and fourth rows is 9 kA3, where k is the conductivity of 

the material  composing the spheres and the Ai is one of the a reas  of con- 

tact between two spheres in the ith and (i+l)th rows. 

of the a r r ay  is then given by 

The total conductance 

1 1 1 
t - + -  

KA 9kA1 9kA2 9kA3 
- - -  - 1 

o r  

Referring again to Figure 3 ,  it is seen that the a rea  A is (5. 5 )  IT R2 

where R is the radius of a sphere. Thus, 

If one now imagines adding more and more spheres to each row, 

while keeping the number in one row the same as that in any other row, 

i t  is seen that the number of contacts between any two rows will always 

be (2n-1), where n is the number of spheres in a row. 

that the total a rea  A wil l  be (n + +> IT RZ. Equation 1 7  can therefore be 

generalized to 

It is also seen 

(2n-1) k A1 At A3 

(.ti> TT R2 (A2 A3 t Ai  A3 t A i  Az) 
K =  

16 



I '  An examination of Equation 17 further shows that in the case of 

m rows instead of 4 the equation becomes 

(2n-1) k A i  A2 A3. .  . Am-1 
K =  

(nt;)nR' [(Az A3.. .Am-i) -t ( A i  A3 A i . .  . Amel )+ .  . . t (AiAzA3. - .A,-Z)] 

(18) 

For an infinite ndmber of beads in  each row, this becomes 

since the numbers 1 and 1/2 can be neglected. 

infinite number of rows cannot be made at this point. 

The extension to an 

The extension of the argument to the three-dimensional case is 

now considered. 

Figure 4, adapted from Kittel  . 
bottom layer of spheres, the circles and crosses the centers of the second 

and third layers, respectively. 

in visualization; this arrangement is similar to a stack of cannonballs in a 

park. ) The arrangement of Figure 4 is called cubic close-packed a s  

The system of interest is depicted schematically in 
2 The dots represent the centers of the 

(The dashed lines have been put in for ease 

+ + . + .  + . 
Figure 4 

17 



I ’  opposed to hexagonal close-packed where the spheres in the third layer lie 

directly above the spheres in the first layer. 

over the hexagonal to simplify a later calculation (page 22). 

The cubic has been chosen 

Now the method of adding conductances in the three-dimensional 

case is no different from that used in the two-dimensional case, i. e . ,  the 

resultant equation for the conductivity is very similar. Thus, the number 

of spheres in a row (to be added in parallel) i s  now the number of spheres 

in a layer and the number of rows is now the number of layers (to be 

added in ser ies) .  

contact with three below it ,  instead of two as in the two-dimensional case. 

In this system there a re  therefore (3n-x) contacts between any two layers, 

where n is the number of spheres in a layer and x is a number to take care  

of end effects*. 

from Figure 5. 

easily be found by considering the dotted triangle. 

It is seen that in this arrangement each sphere is in 

The total area of the bottom plate in Figure 4 is found 

The dimension a is clearly 7R and the dimension b can 

F igu re  5 

3R 

“Contrary to the two-dimensional case, x is variable in the three- 
dimensional case. 
a r e  no end effects however, and x drops nat of the expreasicm. 

For an infinite number of spheres in a layer, there 

18 



or  

d2 = (6R)' - (3R)' 

d = e R  

b = d t 2 R  

= ( m t 2 ) R = ( 3 4 + 2 ) R  . 

Thus A = ab = 7 (3  (3 t 2)  R2. 

more spheres to each row that for p spheres, the dimension a becomes 

(2p t l )R .  By adding more and more rows, the dimension b for m rows 

can be shown to be 

Now it can be seen by adding more and 

b = [ 4 3  (m-1)+ 21 R . 
(Note that this expression reduces correctly to 2R when there is only one 

row: b = 2R). 

row and m rows then becomes 

The general expression for the a rea  A for p spheres per 

A = ( 2 p t l )  [ 4 3  ( m - l ) t  21 Rz . 

The expression for the conductivity, Equation 18, then becomes 

(3pm-x) k A1 A2 A 3 . .  . A,-1 
K =  

( 2 p t l )  [a (m-1)t2]R2 [ ( A z A ~ .  . .Ar,I)t(A1A3A,. . .Ar-1)+. . . t(AIAZA3.. .Ar,z)] 

where pm is written for n, the total number of spheres.per layer, and r 

is the number of layers. An expression fo r  the areas  Ai is now calculated. 

Timoshenko" gives for the radius of the circle of the area of 

contact between two spheres with a force P acting to press them together 

the following expre s s ion: 



where 

ki = ( 1-vi2)/(. Ei) 

v i  - Poisson's ratio 

E i  - Young's modulus 

R1 - radius of one sphere 

Rz - radius of the other sphere. 

In the case of glass beads assumed to be identical, kl = kz and R1= Rz 3 R, 

so  that Equation 20 reduces to 

1 - a = ( $ P R k )  3 . 

The force between two spheres A and B in the cubic close-packed arrange- 

ment is now calculated. Consider Figure 6: 

W 

Figure 6 

T1. L U ~  force F pressing the two $,ea& together IS tfie cr?mpnent  of the 

gravitational force in the direction shown. 

20 
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The angle 6 is determined from geometrical considerations: 

x +  R sin 6 =- 
2R 

To calculate x, consider a top view of the three spheres upon which 

sphere A rests (Figure 7) .  

Figure 7 

From Figures 6 ,  7 ,  and 8 it is  seen that 

P = x t R  

or 

x z 1 - R  

and from Figure 8 it  is  clear that 

R cos 30" = - 
1 

or 

R 
cos 30" P =  

21 

Figure 8 
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so that 

and 

- R t R  R 
cos 30" 

2R 
sin 8 = 

1 
2 cos 30" 4 3  

= -  1 - - 

This is for the case of one bead resting on three beads. 

case of cubic close-packing, there wil l  be r layers of beads. 

For the general 

An examination of Figure 9 shows that the total force on any given 

sphere f rom a given direction is equal to n F where n is the total number 

of layers above that sphere, and F is the force exerted on it by a single 

sphere in the layer just above it (Figure 6). The force is transferred 

directly from one bead to the next in a straight line, so that the force 

between a sphere in the nth layer and the (nt1)th layer wil l  be given by 

1 
2 
- 

p n = n w  (5> . 

Figure 9 

22 



This is the P to be inserted into Equation 21 for the calculation of the 

area of contact between a bead in the nth layer and one in the (n+l)th 

layer. 

4 
3 

the force between a sphere in the nth layer and one in the (n+l)th layer is 

given by 

The weight w of a sphere is - p r R 3 .  Inserting this into Equation 22 

1 
2 
- 

4 
3 Pn = -  n p r  R 3  (f) . 

Insertkg this and the expressim fcr  k (pzge 29)  int3 Equsticn 21,  the rzdius 

of the circle of contact becomes 

The area  then becomes 

For identical spheres of a given composition, this equation reduces to 

2 - 
An = c n 3  

with 

23 
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Equation 18 for the conductivity then becomes 

2 2 2  2 
(3pm-x)kc [ ( 1 ) T ( 2 ) T ( 3 ) T . .  . ( r - l ) x ]  

2 
t . .  . t [ ( l ) % ( 2 ) $ ( 3 ) $ . .  . (r-2)3]) 

Whether or not this expression has a limit as n, p, m, r -. m remains to 

be seen. No answer to this question is immediately obvious. 

24 
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SUMMARY 

Expressions for the absorption coefficient of crystalline solids 

have been calculated both classically and quantum-mechanically. 

classical  calculation the solid was treated first as a collection of f ree  ions 

and then treated as a collection of harmonic oscillators. 

In the 

While the latter 

model yielded a frequency-dependent expression, the frequency dependence 

was found to drop out in making a comparison with experimental data for 

NaCl using uo2 = 1.6  X 

wo, was negiigibiie compared to the frequencies at which the data were 

taken. 

for NaCl near 26p. 

elastic stiffness constant, not given by Kittel. 

published in 1957, i t  is possible that such a resonance has been discussed 

in the literature. A search of the literature since 1957 is therefore 

suggested. 

(squared) range near wo2 = 1.6 X loz6 sec-’ should also be sought. Finally 

it is noted that the classical equation derived here predicts infinite absorp- 

tion at the resonant frequency. 

damping te rm to the equation of motion (Equation 10) and repeating the 

calculation. 

sec-’. This was because the resonant frequency, 

It is strongly suggested by the data that another resonance exists 

This would lead to another force constant and another 

Since Kittel’s book was 

Data for the absorption coefficient of NaCl in the frequency 

This could be eliminated by adding a 

The greatest difficulty in the quantum mechanical treatment is in 

estimating the quantum numbers of the initial and final states to be inserted 

in Equation 13 for n and n‘. 

for D, Equation 15, a more accurate means of determining these quantum 

numbers should be found. 

distribution among the oscillators composing the solid. 

Before evaluating the integral in the expression 

This might be done by considering the energy 

In the calculation of the thermal conductivity of an a r r ay  of close- 

packed spheres, an expression has been obtained for  a finite number of 

spheres.  For  a large number of spheres, an evaluation of this expression 
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would require the use of an electronic computer. Before doing this, 

however, it should be determined mathematically whether or not the 

derived expression possesses a limit as the number of spheres becomes 

large. 
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